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Figure 1: Overview: intersecting cylinders.

1 A Norbert Wiener Story

There are lots of Norbert Wiener stories [2]. In one
of them, rendered from memory by David Cahlander,
a colleague set a question for Wiener as the two of
them waited for an elevator; Wiener announced the
solution as the elevator reached the fourth floor. The
problem:

You have a dowel, two inches in diam-
eter. Use a two-inch diameter bit to drill
a hole through the dowel, perpendicular to
the axis and straight through the center.
What is the volume of the wood removed
from the dowel?
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Figure 2: Boundary of the volume removed by the
drill.

See Figure 1 for an illustration: call the yellow
cylinder the dowel and the green cylinder the drill
bit.1

To illustrate the symmetry, see Figure 2, showing
the intersection, with the rest of the two cylinders
removed. Note also the apparent color swap: the left
side, where the yellow cylinder was in Figure 1, is
now green. Why?

The colors did not change. The green bits in Fig-
ure 2 are part of the surface of the green cylinder that
were covered up by the yellow cylinder in Figure 1.
All of the yellow and green surfaces in Figure 2 be-
long the surface of one of the two original cylinders.
That fact will be useful in computing the volume.

1Vice versa would work as well, since the problem is sym-
metric.
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Figure 3: Three plane projections of intersecting
cylinders. Upper left: looking down the ẑ-axis; up-
per right: looking down the x̂-axis; lower left: looking
along the ŷ-axis. The dashed square on the upper left
projection is explained in the text.

2 Geometry

As is clear from Figure 2, the drilled-out volume is
not one of the easy standard shapes, e,g, a sphere.
So, what is it?

Let’s build it from its components. First, what is
a cylinder? Let’s define it as the set of points (locus,
if you want the jargon) at a constant perpendicular
distance, r, from a line in 3-D space. So for a cylinder
centered on, say, the x̂ axis, then the cylinder satisfies

y2 + z2 = r2. (1)

For any given value of x, this defines a circle; over all
values of x it’s a cylinder, with circular cross-section.
This becomes clearer in orthogonal projections of our
intersecting cylinders onto the xy, yz, and xz planes,
shown in Figure 3.
What happens when we run a dowel through a

planer? That is, geometrically, we take the inter-
section of a cylinder with a plane running parallel
to the axis of the cylinder? Then the result looks
like Figure 4, which illustrates a useful property of
cylinders. Consider the boundary between the (blue)
plane and (yellow) cylinder. I claim that this is a

Figure 4: A cylinder with part shaved off by a plane
parallel to the axis of the cylinder.

straight line. Proof: the equation of the plane is
z = k, where 0 < k < r is some constant. So to
find an equation for the intersection of the plane and
the cylinder, substitute for z in Equation 2:

x2 + k2 = r2

x2 = r2 − k2

x = ±
√
r2 − k2,

that is, along the intersection of plane and cylinder,
x takes on two possible constant values, straddling
the y = 0 plane, while z is a constant and y varies
however it wants. This is a line! The intersection is
a line, parallel to the ŷ axis, which is also the axis of
the cylinder.

The same reasoning applies to a green cylinder cen-
tered on the x̂ axis. Or any other color, for that
matter.

What about the intersection of two perpendicular
cylinders with equal radii, as in Figure 1? Let’s as-
sume that the green cylinder is centered on the x̂
axis and the yellow cylinder is centered on the ŷ axis.
Then their respective equations are:

x2 = r2 − z2

y2 = r2 − z2,
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Figure 5: The blue patch, corresponding to the
dashed box in Figure 3, is a square.

or:

x(z) = ±
√
r2 − z2 (2)

y(z) = ±
√
r2 − z2. (3)

Notice that |x(z)| = |y(z)| for any given value of
z. That implies that the corners of the plane figure
form a square centered on x = y = 0.

Consider, in Figure 5, the intersection, as in Fig-
ure 2, but with everything above z = 0.75 planed off.
The blue shape is a square, because we’ve established
that, first, the edges are line segments; and second,
the vertices are the corners of a square. It’s a square!

That is the unit we’ll use to compute the volume
of our shape.

3 Computing the Volume

We’re going to compute the volume V of the octant
of the intersection with all nonnegative coordinates.
Because the intersection is symmetrical, the volume
of the whole is 8V .

We’ll integrate a stack of squares, each in a plane
normal to the ẑ axis, starting with z = 0 and pro-
ceeding to z = r.

One corner of each square is on the ẑ axis, at
x = y = 0. The other corner is at the positive-x̂, ŷ

intersection of the surfaces of the two cylinders. For
now we’ll leave those coordinates as a function of z:

V =

∫ r

z=0

x(z)y(z)dz.

We already have expressions for x(z) and y(z) from
Equations 2 and 3. Substituting into the equation for
V :

V =

∫ r

z=0

√
r2 − z2

√
r2 − z2dz

=

∫ r

z=0

r2 − z2dz

= (zr2 − z3/3)
∣∣r
z=0

= (r3 − r3/3)− (0r2 − 03/3)

= 2r3/3.

As described above, V covers one octant of the in-
tersection, and r = 1, so the total intersection volume
T is:

T = 8V

= 8(2r3/3)

= 16(13)/3

= 16/3.

There’s no π to be seen. Surprise!

4 Coda

Somehow the answer is always in the back of the
book, if you look hard enough [1].

The Steinmetz solid can be constructed from com-
mon materials, with common tools (if one has the
skill): for example, see Figure 6.
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Figure 6: A Steinmetz solid in real life, courtesy of John Freeman


